Dissemin is shutting down on January 1st, 2025

Published in

Portland Press, Essays in Biochemistry, (53), p. 129-140, 2012

DOI: 10.1042/bse0530129

Links

Tools

Export citation

Search in Google Scholar

Epithelial cell polarity: What flies can teach us about cancer

Journal article published in 2012 by Daniel T. Bergstralh, Daniel St Johnston ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Epithelial cells are polarized along their apical–basal axis. Much of the cellular machinery that goes into establishing and maintaining epithelial cell polarity is evolutionarily conserved. Model organisms, including the fruit fly, Drosophila melanogaster, are thus particularly useful for the study of cell polarity. Work in Drosophila has identified several important components of the polarity machinery and has also established the surprising existence of a secondary cell polarity pathway required only under conditions of energetic stress. This work has important implications for the understanding of human cancer. Most cancers are epithelial in origin, and the loss of cell polarity is a critical step towards malignancy. Thus a better understanding of how polarity is established and maintained in epithelial cells will help us to understand the process of malignant transformation and may lead to improved therapies. In the present chapter we discuss the current understanding of how epithelial cell polarity is regulated and the known associations between polarity factors and cancer.