Published in

Taylor and Francis Group, Molecular Membrane Biology, 6(29), p. 207-217

DOI: 10.3109/09687688.2012.700491

Links

Tools

Export citation

Search in Google Scholar

Improved model systems for bacterial membranes from differing species: Theimportance of varying composition in PE/PG/cardiolipin ternary mixtures

Journal article published in 2012 by Silvia C. Lopes, Cristina S. Neves, Peter Eaton ORCID, Paula Gameiro ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Steady-state fluorescence anisotropy and dynamic light scattering (DLS) were used to determine the thermotropic properties of lipid systems that act as models for bacterial membranes of Yersinia kristensenii and Proteus mirabilis. Lipid proportions of PE:PG:CL of 0.60:0.20:0.20 and 0.80:0.15:0.05, were used in order to mimic these two membranes respectively. We observed that the introduction of cardiolipin (CL) as a third lipid component of any PE:PG mixture, changes the system's properties considerably. The results obtained by these two techniques show that the main transition temperatures obtained are undoubtedly CL-dependent. Additionally AFM experiments were performed and these results show that even at small concentration CL produces important changes not only in the membrane thermotropic properties, but also in the bilayer structure. In summary, we were able to compare how low and high CL concentration affect bacterial membrane model system properties which can provide a further explanation for the different antibiotic susceptibilities reported for Y. kristensenii and P. mirabilis.