Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Metabolic Engineering Communications, (2), p. 46-57, 2015

DOI: 10.1016/j.meteno.2015.06.001

Links

Tools

Export citation

Search in Google Scholar

Dynamic Metabolic Flux Analysis using B-splines to study the effects of temperature shift on CHO cell metabolism

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Metabolic flux analysis (MFA) is widely used to estimate intracellular fluxes. Conventional MFA, however, is limited to continuous cultures and the mid-exponential growth phase of batch cultures. Dynamic MFA (DMFA) has emerged to characterize time-resolved metabolic fluxes for the entire culture period. Here, the linear DMFA approach was extended using B-spline fitting (B-DMFA) to estimate mass balanced fluxes. Smoother fits were achieved using reduced number of knots and parameters. Additionally, computation time was greatly reduced using a new heuristic algorithm for knot placement. B-DMFA revealed that Chinese hamster ovary cells shifted from 37°C to 32°C maintained a constant IgG volume-specific productivity, whereas the productivity for the controls peaked during mid-exponential growth phase and declined afterward. The observed 42% increase in product titer at 32°C was explained by a prolonged cell growth with high cell viability, a larger cell volume and a more stable volume-specific productivity.