Published in

American Chemical Society, Journal of Physical Chemistry C, 45(117), p. 23956-23963, 2013

DOI: 10.1021/jp408414f

Links

Tools

Export citation

Search in Google Scholar

Revisiting the Dependence of the Optical and Mobility Gaps of Hydrogenated Amorphous Silicon on Hydrogen Concentration

Journal article published in 2013 by Merid Legesse, Michael Nolan ORCID, Giorgos Fagas
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The optical absorption properties of hydrogenated amorphous silicon (a-Si:H) are important in solar applications and from the perspective of fundamental materials science. However, there has been a long-standing question from experiment of the dependence of the optical gap on the hydrogen content in a-Si:H. To reconcile this debate, we present density functional theory simulations of models of hydrogenated a-Si:H, with different hydrogen concentrations up to and including full hydrogen saturation. We discuss the dependence of the optical and mobility gaps in fully saturated and undersaturated a-Si:H. Oversaturation with hydrogen results in a dramatic change in the properties of a-Si:H and is beyond the scope of this paper. For undersaturated hydrogen contents, both gaps increase with increasing hydrogen concentration until hydrogen saturation is achieved. Our key finding is that at saturation the optical and mobility gaps converge to a value independent of the hydrogen content. Our analysis thus resolves the contradiction between experimental data examining the effect of hydrogen content up to saturation and interpretations based on conventional expectations regarding the hydrogen dependence of the optical and mobility gaps up to saturation, and it provides new insight into the materials properties of hydrogenated amorphous silicon that can be used for sample preparation.