Published in

Elsevier, Computers and Operations Research, (62), p. 224-236, 2015

DOI: 10.1016/j.cor.2014.09.003

Links

Tools

Export citation

Search in Google Scholar

A genetic algorithm for the uncapacitated single allocation planar hub location problem

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Given a set of n interacting points in a network, the hub location problem determines location of the hubs (transfer points) and assigns spokes (origin and destination points) to hubs so as to minimize the total transportation cost. In this study, we deal with the uncapacitated single allocation planar hub location problem (PHLP). In this problem, all flow between pairs of spokes goes through hubs, capacities of hubs are infinite, they can be located anywhere on the plane and are fully connected, and each spoke must be assigned to only one hub. We propose a mathematical formulation and a genetic algorithm (PHLGA) to solve PHLP in reasonable time. We test PHLGA on simulated and real life data sets. We compare our results with optimal solution and analyze results for special cases of PHLP for which the solution behavior can be predicted. Moreover, PHLGA results for the AP and CAB data set are compared with other heuristics.