Published in

American Geophysical Union, Geophysical Research Letters, 16(42), p. 6614-6621, 2015

DOI: 10.1002/2015gl064885

Links

Tools

Export citation

Search in Google Scholar

On the use of remote infrasound and seismic stations to constrain the eruptive sequence and intensity for the 2014 Kelud eruption

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The February 2014 eruption of Kelud volcano (Indonesia) destroyed most of the instruments near it. We use remote seismic and infrasound sensors to reconstruct the eruptive sequence. The first explosions were relatively weak seismic and infrasound events. A major stratospheric ash injection occurred a few minutes later and produced long-lasting atmospheric and ground-coupled acoustic waves that were detected as far as 11,000 km by infrasound sensors and up to 2300 km away on seismometers. A seismic event followed ∼12 minutes later and was recorded 7000 km away by seismometers. We estimate a volcanic intensity around 10.9, placing the 2014 Kelud eruption between the 1980 Mount St. Helens and 1991 Pinatubo eruptions intensities. We demonstrate how remote infrasound and seismic sensors are critical for the early detection of volcanic explosions, and how they can help to constrain and understand eruptive sequences.