Published in

Wiley, Plasma Processes and Polymers, S1(6), p. S462-S467, 2009

DOI: 10.1002/ppap.200931002

Links

Tools

Export citation

Search in Google Scholar

Thermal Stability and Oxidation Resistance of Nanocomposite TiC/a‐C Protective Coatings

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nanocomposite films composed by small crystallites of hard phases embedded in an amorphous lubricant matrix have been extensively studied as protective coatings. These kinds of coatings have often to work in extreme environments, exposed to high temperatures (above 800–900 °C), and/or oxidizing/corrosive atmospheres, which may resist. As a result, it is important to study the behavior of such coatings at high temperatures (thermal stability) and in the presence of oxygen (oxidation resistance). In this sense, we have selected a TiC/a-C nanocomposite coating with good mechanical and tribological properties in order to do several thermal tests under three different environments: high vacuum (10−6 mbar), low vacuum (10−1 mbar), and air. Our observations allow us to establish that the film microstructure is stable at least up to 1 000 °C in high vacuum. When oxygen is present, the practical temperature of use is reduced at 700 °C (low partial pressure) and 300 °C (air) by formation of Ti oxides and C removal.