Dissemin is shutting down on January 1st, 2025

Published in

Polskiego Towarzystwa Histochemików i Cytochemików, Folia Histochemica et Cytobiologica, 2(53), p. 169-174

DOI: 10.5603/fhc.a2015.0016

Links

Tools

Export citation

Search in Google Scholar

Differential resistance of human embryonic stem cells and somatic cell types to hydrogen peroxide-induced genotoxicity may be dependent on innate basal intracellular ROS levels

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

White circle
Preprint: policy unclear
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Previously, we demonstrated that undifferentiated human embryonic stem cells (hESC) displayed higher resistance to oxidative and genotoxic stress compared to somatic cells, but did not further probe the underlying mechanisms. Using H₂O₂-induced genotoxicity as a model, this study investigated whether higher resistance of hESC to oxidative and genotoxic stress could be due to lower innate basal intracellular levels of reactive oxygen species (ROS), as compared to their differentiated fibroblastic progenies (H1F) and two other somatic cell types - human embryonic palatal mesenchymal (HEPM) cells and peripheral blood lymphocytes (PBL). Comet assay demonstrated that undifferentiated hESC consistently sustained lower levels of DNA damage upon acute exposure to H₂O₂ for 30 min, compared to somatic cells. DCFDA and HE staining with flow cytometry showed that undifferentiated hESC had lower innate basal intracellular levels of reactive oxygen species compared to somatic cells, which could lead to their higher resistance to genotoxic stress upon acute exposure to H₂O₂.