Published in

Elsevier, Journal of Magnetic Resonance, 1(156), p. 79-96

DOI: 10.1006/jmre.2002.2525

Links

Tools

Export citation

Search in Google Scholar

Homonuclear Zero-Quantum Recoupling in Fast Magic-Angle Spinning Nuclear Magnetic Resonance

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Solid-state magic-angle-spinning NMR pulse sequences which implement zero-quantum homonuclear dipolar recoupling are designed with the assistance of symmetry theory. The pulse sequences are compensated on a short time scale by the use of composite pulses and on a longer time scale by the use of supercycles. (13)C dipolar recoupling is demonstrated in powdered organic solids at high spinning frequencies. The new sequences are compared to existing pulse sequences by means of numerical simulations. Experimental two-dimensional magnetization exchange spectra are shown for [U-(13)C]-L-tyrosine.