Published in

SAGE Publications, Cell Transplantation, 5(17), p. 577-584, 2008

DOI: 10.3727/096368908785095980

Links

Tools

Export citation

Search in Google Scholar

Efficient Delivery of Human Single Fiber-Derived Muscle Precursor Cells Via Biocompatible Scaffold

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The success of cell therapy for skeletal muscle disorders depends upon two main factors: the cell source and the method of delivery. In this work we have explored the therapeutic potential of human muscle precursor cells (hMPCs), obtained from single human muscle fibers, implanted in vivo via micropatterned scaffolds. hMPCs were initially expanded and characterized in vitro by immunostaining and flow cytometric analysis. For in vivo studies, hMPCs were seeded onto micropatterned poly-lactic-glycolic acid 3D-scaffolds fabricated using soft-lithography and thermal membrane lamination. Seeded scaffolds were then implanted in predamaged tibialis anterior muscles of CD1 nude mice; hMPCs were also directly injected in contralateral limbs as controls. Similarly to what we previously described with mouse precursors cells, we found that hMPCs were able to participate in muscle regeneration and scaffold-implanted muscles contained a greater number of human nuclei, as revealed by immunostaining and Western blot analyses. These results indicate that hMPCs derived from single fibers could be a good and reliable cell source for the design of therapeutic protocols and that implantation of cellularized scaffolds is superior to direct injection for the delivery of myogenic cells into regenerating skeletal muscle.