Published in

Wiley, European Journal of Biochemistry, 17(270), p. 3619-3627, 2003

DOI: 10.1046/j.1432-1033.2003.03750.x

Links

Tools

Export citation

Search in Google Scholar

Prevalent conformations and subunit exchange in the biologically active apoptin protein multimer

Journal article published in 2003 by Sirik R. Leliveld, Mathieu H. M. Noteborn, Jan Pieter Abrahams ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recombinant, bacterially expressed apoptin protein induces apoptosis in human tumour cell lines but not in normal cells, mimicking the behaviour of ectopically expressed apoptin. Recombinant apoptin is isolated exclusively as a highly stable multimeric complex of 30-40 monomers, with little, if any, alpha-helical and beta-sheet structure. Despite its apparent disorder, multimeric apoptin is biologically active. Here, we present evidence that most of the apoptin moieties within the complex may well share a similar conformation. Furthermore, the multimer has extensive and uniform hydrophobic patches and conformationally stable domains. Only a small fraction of apoptin subunits can exchange between multimers under physiologically relevant conditions. These results prompt a model in which the apoptin multimer has a highly stable core of nonexchangeable subunits to which exchangeable subunits are attached through hydrophobic interactions. In combination with previous findings, our results lead us to propose that the stable core of apoptin is the biologically relevant structure.