Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Experimental Neurology, (261), p. 698-709

DOI: 10.1016/j.expneurol.2014.07.023

Links

Tools

Export citation

Search in Google Scholar

Impaired Src signaling and post-synaptic actin polymerization in Alzheimer's disease mice hippocampus - Linking NMDA receptors and the reelin pathway

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Early cognitive deficits in Alzheimer's disease (AD) have been related to deregulation of N-methyl-D-aspartate receptors (NMDARs) and synaptic dysfunction in response to amyloid-beta peptide. NMDARs anchorage to post-synaptic membrane depends in part on Src kinase, which is also implicated in NMDAR activation and actin cytoskeleton stabilization, two processes relevant for normal synaptic function. In this study we analysed the changes in GluN2B subunit phosphorylation and the levels of proteins involved in Src related signaling pathways linking the Tyr kinase to actin cytoskeleton polymerization, namely reelin, disabled-1 (Dab1) and cortactin, in hippocampal and cortical homogenates obtained from the triple transgenic mouse model of AD (3xTg-AD) that shows progression of pathology as a function of age versus age-matched wild-type mice. Moreover, we evaluated regional post-synaptic actin polymerization using phalloidin labelling in hippocampal slices. Young (3month-old) 3xTg-AD mice male hippocampus exhibited decreased GluN2B Tyr1472 phosphorylation and reduced Src activity. In the cortex, decreased Src activity correlated with reduced levels of reelin and Dab1, implicating changes in the reelin pathway. We also observed diminished phosphorylated Dab1 and cortactin protein levels in hippocampus and cortex of young 3xTg-AD male mice. Concordantly with the recognized role of these proteins in actin stabilization, we detected a significant decrease in post-synaptic F-actin in 3month-old 3xTg-AD male CA1 and CA3 hippocampal regions. These data suggest deregulated Src-dependent signaling pathways involving GluN2B-composed NMDARs and post-synaptic actin cytoskeleton depolymerization in the hippocampus in early stages of AD.