Published in

Elsevier, Procedia Computer Science, (51), p. 1168-1177, 2015

DOI: 10.1016/j.procs.2015.05.286

Links

Tools

Export citation

Search in Google Scholar

Safer Batteries through Coupled Multiscale Modeling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Batteries are highly complex electrochemical systems, with performance and safety governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. We describe a new, open source computational environment for battery simulation known as VIBE - the Virtual Integrated Battery Environment. VIBE includes homogenized and pseudo-2D electrochemistry models such as those by Newman-Tiedemann-Gu (NTG) and Doyle-Fuller-Newman (DFN, a.k.a. DualFoil) as well as a new advanced capability known as AMPERES (Advanced MultiPhysics for Electrochemical and Renewable Energy Storage). AMPERES provides a 3D model for electrochemistry and full coupling with 3D electrical and thermal models on the same grid. VIBE/AMPERES has been used to create three-dimensional battery cell and pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical response under adverse conditions.