Published in

Elsevier, Journal of Biological Chemistry, 40(271), p. 24747-24752, 1996

DOI: 10.1074/jbc.271.40.24747

Links

Tools

Export citation

Search in Google Scholar

Cell-Cell Adhesion Mediated by Binding of Membrane-anchored Ligand LERK-2 to the EPH-related Receptor Human Embryonal Kinase 2 Promotes Tyrosine Kinase Activity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Human embryonal kinase 2 (HEK2) is a protein-tyrosine kinase that is a member of the EPH family of receptors. Transcripts for HEK2 have a wide tissue distribution. Recently, a still growing family of ligands, which we have named LERKs, for ligands of the eph-related kinases, has been isolated. In order to analyze functional effects between the LERKs and the HEK2 receptor, we expressed HEK2 cDNA in an interleukin-3-dependent progenitor cell line 32D that grows as single cells in culture. Within the group of LERKs, LERK-2 and -5 were shown to bind to HEK2. Membrane-bound and soluble forms of LERK-2 were demonstrated to signal through HEK2 as judged by receptor phosphorylation. Coincubation of HEK2 and LERK-2 expressing cells induced cell-cell adhesion and formation of cell aggregates. This interaction could be inhibited by preincubation of HEK2 expressing cells with soluble LERK-2. Coexpression of HEK2 and LERK-2 in 32D cells showed reduced kinase activity and autophosphorylation of HEK2 compared with the juxtacrine stimulation, which seems to be due to a reduced sensitivity of the receptor.