Published in

Wiley, Developmental Dynamics, 2(236), p. 556-563, 2007

DOI: 10.1002/dvdy.21038

Links

Tools

Export citation

Search in Google Scholar

Heparan sulfate Ndst1 gene function variably regulates multiple signaling pathways during mouse development

Journal article published in 2006 by Srinivas R. Pallerla ORCID, Yi Pan, Xin Zhang, Jeffrey D. Esko, Kay Grobe
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Disruption of heparan sulfate (HS) synthesis in vertebrate development causes malformations that are composites of those caused by mutations of multiple HS binding growth factors and morphogens. We previously reported severe developmental defects of the forebrain and the skull in mutant mice bearing a targeted disruption of the heparan sulfate-generating enzyme GlcNAc N-deacetylase/GlcN N-sulfotransferase 1 (Ndst1). Here, we further characterize the molecular mechanisms leading to frontonasal dysplasia in Ndst1 mutant embryos and describe additional malformations, including impaired spinal and cranial neural tube fusion and skeletal abnormalities. Of the numerous proteins that bind HS, we show that impaired fibroblast growth factor, Hedgehog, and Wnt function may contribute to some of these phenotypes. Our findings, therefore, suggest that defects in HS synthesis may contribute to multifactor types of congenital developmental defects in humans, including neural tube defects.