Dissemin is shutting down on January 1st, 2025

Published in

The Royal Society, Philosophical Transactions of the Royal Society B: Biological Sciences, 1339(351), p. 569-578

DOI: 10.1098/rstb.1996.0056

Links

Tools

Export citation

Search in Google Scholar

Ligand-Dependent Interaction of Nuclear Receptors with Potential Transcriptional Intermediary Factors (Mediators)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The activity of the ligand-inducible activation function 2 (AF-2) contained in the ligand binding domain (LBD) of nuclear receptors (NRs) is thought to be mediated by transcriptional intermediary factors (TIFs). We have recently reported the isolation and characterization of two novel mouse proteins, designated TIF1 and mSUG1, that interact in a ligand-dependent fashion with the LBD (region E) of several NRs in vivo as well as in vitro. Remarkably, these interactions require the conserved core motif of the AF-2 activating domain (AF-2 AD) and can be blocked by AF-2 antagonists. TIF1 and mSUG1 might therefore represent TIFs/mediators for the ligand-dependent AF-2 of NRs. By comparing the interaction properties of these two putative TIFs with different NRs including the oestrogen (ER), thyroid hormone (TR), vitamin D3 (VDR), retinoic acid (RAR alpha) and retinoid X (RXR) receptors, we demonstrate that: (i) RXR alpha efficiently interacts with TIF1, but not with mSUG1, whereas TR alpha interacts much more efficiently with mSUG1 than with TIF1, and RAR alpha, VDR and ER efficiently interact with both TIF1 and mSUG1; (ii) the amphipathic alpha helix core of AF-2 AD is differentially involved in the interactions of RAR alpha with TIF1 and mSUG1; and (iii) the AF-2 AD cores of RAR alpha and ER are similarly involved in their interaction with TIF1, but not with mSUG1. Thus the interaction interfaces between the various NRs and either TIF1 or mSUG1 may vary depending on the nature of both the receptor and the putative mediator of its AF-2 function. We discuss the possible roles of TIF1 and mSUG1 as mediators of the transcriptional activity of the AF-2 of NRs.