Published in

Wiley, Molecular Microbiology, 4(64), p. 917-922, 2007

DOI: 10.1111/j.1365-2958.2007.05718.x

Links

Tools

Export citation

Search in Google Scholar

Chaperoning Anfinsen: The steric foldases

Journal article published in 2007 by Kris Pauwels ORCID, Inge Van Molle, Jan Tommassen, Patrick Van Gelder
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Some proteins are so much resistant to proteolysis and unfolding that they violate folding rules shared by the vast majority of proteins. These unusual proteins manage to fold into an active native conformation that is thermodynamically at best marginally, but often even less stable than the unfolded state. A huge energetic barrier traps these proteins kinetically in the folded state. The drawback of this situation is the need for a specialized chaperone that adds steric information to the proteins to cross this barrier on the folding pathway. Until now, our knowledge of these intriguing chaperones was restricted to the prodomains of secreted proteases, which function intramolecularly. Recent research has added more examples, which now include the membrane-anchored lipase-specific foldase and the pilus subunit specific chaperone, both acting intermolecularly. The case of the pilin chaperone is somewhat deviant in that steric information is definitely provided, but the pilus subunit adopts a thermodynamically favourable stable conformation.