Published in

MyJove Corporation, Journal of Visualized Experiments, 100, 2015

DOI: 10.3791/52450-v

MyJove Corporation, Journal of Visualized Experiments, 100, 2015

DOI: 10.3791/52450

Links

Tools

Export citation

Search in Google Scholar

An Injectable and Drug-loaded Supramolecular Hydrogel for Local Catheter Injection into the Pig Heart

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Regeneration of lost myocardium is an important goal for future therapies because of the increasing occurrence of chronic ischemic heart failure and the limited access to donor hearts. An example of a treatment to recover the function of the heart consists of the local delivery of drugs and bioactives from a hydrogel. In this paper a method is introduced to formulate and inject a drug-loaded hydrogel non-invasively and side-specific into the pig heart using a long, flexible catheter. The use of 3-D electromechanical mapping and injection via a catheter allows side-specific treatment of the myocardium. To provide a hydrogel compatible with this catheter, a supramolecular hydrogel is used because of the convenient switching from a gel to a solution state using environmental triggers. At basic pH this ureido-pyrimidinone modified poly(ethylene glycol) acts as a Newtonian fluid which can be easily injected, but at physiological pH the solution rapidly switches into a gel. These mild switching conditions allow for the incorporation of bioactive drugs and bioactive species, such as growth factors and exosomes as we present here in both in vitro and in vivo experiments. The in vitro experiments give an on forehand indication of the gel stability and drug release, which allows for tuning of the gel and release properties before the subsequent application in vivo. This combination allows for the optimal tuning of the gel to the used bioactive compounds and species, and the injection system.