Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Energy Technology, 6(2), p. 531-541, 2014

DOI: 10.1002/ente.201402005

Links

Tools

Export citation

Search in Google Scholar

Estimation of Energy Production of Dye-Sensitized Solar Cell Modules for Building-Integrated Photovoltaic Applications

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The standard parameters considered to compare energy-harvesting efficiency such as the efficiency measured in standard test conditions or the concept of peak Watt power production may lead to an incorrect estimation of the real producible energy. In this work, we aim to confirm that in realistic outdoor building-integrated photovoltaic (BIPV) installations, the gap between dye-sensitized solar cells (DSC) and other available technologies is lower than expected in terms of producible energy. We have developed a model for the evaluation of the producible energy on a generic BIPV site with DSC technology. Average daily irradiation and temperature are considered to integrate the instantaneous power to obtain the energy production. To compare the producible energy of DSC technology with other commercial photovoltaic technologies (crystalline and amorphous silicon, CdTe, or copper indium gallium selenide), we use the estimation of energy production available under the Photovoltaic Geographical Information System platform.