Published in

Elsevier, Mechanisms of Development, 11-12(124), p. 884-897, 2007

DOI: 10.1016/j.mod.2007.09.002

Links

Tools

Export citation

Search in Google Scholar

Fernandez, B.G., Arias, A.M. & Jacinto, A. Dpp signalling orchestrates dorsal closure by regulating cell shape changes both in the amnioserosa and in the epidermis. Mech. Dev. 124, 884-897

Journal article published in 2007 by Beatriz García Fernández, Alfonso Martinez Arias, Antonio Jacinto
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

During the final stages of embryogenesis, the Drosophila embryo exhibits a dorsal hole covered by a simple epithelium of large cells termed the amnioserosa (AS). Dorsal closure is the process whereby this hole is closed through the coordination of cellular activities within both the AS and the epidermis. Genetic analysis has shown that signalling through Jun N-terminal Kinase (JNK) and Decapentaplegic (Dpp), a Drosophila member of the BMP/TGF-beta family of secreted factors, controls these activities. JNK activates the expression of dpp in the dorsal-most epidermal cells, and subsequently Dpp acts as a secreted signal to control the elongation of lateral epidermis. Our analysis shows that Dpp function not only affects the epidermal cells, but also the AS. Embryos defective in Dpp signalling display defects in AS cell shape changes, specifically in the reduction of their apical surface areas, leading to defective AS contraction. Our data also demonstrate that Dpp regulates adhesion between epidermis and AS, and mediates expression of the transcription factor U-shaped in a gradient across both the AS and the epidermis. In summary, we show that Dpp plays a crucial role in coordinating the activity of the AS and its interactions with the LE cells during dorsal closure.