Published in

Elsevier, Journal of Molecular Biology, 24(426), p. 4112-4124, 2014

DOI: 10.1016/j.jmb.2014.07.016

Links

Tools

Export citation

Search in Google Scholar

Cu,Zn-Superoxide Dismutase without Zn Is Folded but Catalytically Inactive

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Amyotrophic Lateral Sclerosis has been linked to the gain of aberrant function of superoxide dismutase, Cu,Zn-SOD1 upon protein misfolding. The mechanism of SOD1 misfolding is thought to involve mutations leading to the loss of Zn, followed by protein unfolding, and aggregation. We show that the removal of Zn from SOD1 may not lead to an immediate unfolding, but immediately deactivates the enzyme through a combination of subtle structural and electronic effects. Using Quantum Mechanics/Discrete Molecular Dynamics, we showed that Zn-less wild type SOD1 and its D124N mutant that does not bind Zn both have at least metastable folded states. In those states, the reduction potential of Cu increases, leading to the presence of detectable amounts of Cu(I) instead of Cu(II) in the active site, as confirmed experimentally. The Cu(I) protein cannot participate in the catalytic Cu(I) - Cu(II) cycle. However, even without the full reduction to Cu(I), the Cu site in the Zn-less variants of SOD1 is shown to be catalytically incompetent: unable to bind superoxide in a way comparable to the wild type SOD1. The changes are more radical and different in the D124N Zn-less mutant than in the Zn-less wild type SOD1, suggesting D124N being perhaps not the most adequate model for Zn-less SOD1. Overall, Zn in SOD1 appears to be influencing the Cu site directly by adjusting its reduction potential and geometry. Thus, the role of Zn in SOD1 is not just structural, as was previously thought; it is a vital part of the catalytic machinery.