Elsevier, Soil Biology and Biochemistry, 9(43), p. 1858-1865
DOI: 10.1016/j.soilbio.2011.05.002
Full text: Unavailable
A field experiment was conducted to elucidate ecosystem services provided by earthworms on the repression of phytopathogenic and toxinogenic fungi. The study focussed on decomposing Fusarium culmorum-infected and deoxynivalenol (DON)-contaminated wheat straw remaining on the soil surface as part in conservation tillage. Mesocosms were established in the topsoil of a winter wheat field located in Northern Germany, where conservation tillage has been practised for 20 years. Besides a non-earthworm treatment, two earthworm species were inoculated in the mesocosms either separately or combined: Lumbricus terrestris (anecic, detritivorous) and Aporrectodea caliginosa (endogeic, geophagous). The earthworms were exposed either to artificially Fusarium-infected wheat straw highly contaminated with DON or to non-infected straw serving as a control. The experiment was conducted during an eight week period after harvest from mid August to mid October. For both species, the artificially Fusarium-infected and DON-contaminated wheat straw was a more attractive food source than the non-infected control. In contrast to A. caliginosa, L. terrestris incorporated infected straw faster into the soil compared to control straw. Furthermore, the reduction of Fusarium biomass and DON concentration in wheat straw was significantly higher in the presence of L. terrestris than in treatments with A. caliginosa and without earthworms. Here, no significant differences could be measured between the Fusarium biomass and DON concentration in wheat straw. A. caliginosa seems not to be relevant for the reduction of Fusarium biomass and DON concentration. We concluded that amongst earthworms, anecic detritivorous species are the drivers to compensate possible negative consequences (like crop infection) of conservation tillage. They take an important role in the control of phytopathogenic and toxinogenic fungi surviving on plant residues and in the degradation of their mycotoxins.