Published in

American Chemical Society, Journal of Natural Products, 4(70), p. 589-595, 2007

DOI: 10.1021/np060535r

Links

Tools

Export citation

Search in Google Scholar

A Routine Experimental Protocol for qHNMR Illustrated with Taxol⊥

Journal article published in 2007 by Guido F. Pauli ORCID, Birgit U. Jaki, David C. Lankin
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Quantitative 1H NMR (qHNMR) provides a value-added dimension to the standard spectroscopic data set involved in structure analysis, especially when analyzing bioactive molecules and elucidating new natural products. The qHNMR method can be integrated into any routine qualitative workflow without much additional effort by simply establishing quantitative conditions for the standard solution 1H NMR experiments. Moreover, examination of different chemical lots of taxol (paclitaxel) and a Taxus brevifolia extract as working examples led to a blueprint for a generic approach to performing a routinely practiced 13C-decoupled qHNMR experiment and for recognizing its potential and main limitations. The proposed protocol is based on a newly assembled 13C GARP broadband decoupled proton acquisition sequence that reduces spectroscopic complexity by removal of carbon satellites. The method is capable of providing qualitative and quantitative NMR data simultaneously and covers various analytes from pure compounds to complex mixtures such as metabolomes. Due to a routinely achievable dynamic range of 300:1 (0.3%) or better, qHNMR qualifies for applications ranging from reference standards to biologically active compounds to metabolome analysis. Providing a "cookbook" approach to qHNMR, acquisition conditions are described that can be adapted for contemporary NMR spectrometers of all major manufacturers.