Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Membranes, 4(5), p. 772-792, 2015

DOI: 10.3390/membranes5040772

Links

Tools

Export citation

Search in Google Scholar

Application of Membrane Crystallization for Minerals’ Recovery from Produced Water

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Produced water represents the largest wastewater stream from oil and gas production. Generally, its high salinity level restricts the treatment options. Membrane crystallization (MCr) is an emerging membrane process with the capability to extract simultaneously fresh water and valuable components from various streams. In the current study, the potential of MCr for produced water treatment and salt recovery was demonstrated. The experiments were carried out in lab scale and semi-pilot scale. The effect of thermal and hydrodynamic conditions on process performance and crystal characteristics were explored. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analyses confirmed that the recovered crystals are sodium chloride with very high purity (>99.9%), also indicated by the cubic structure observed by microscopy and SEM (scanning electron microscopy) analysis. It was demonstrated experimentally that at recovery factor of 37%, 16.4 kg NaCl per cubic meter of produced water can be recovered. Anti-scaling surface morphological features of membranes were also identified. In general, the study provides a new perspective of isolation of valuable constituents from produced water that, otherwise, is considered as a nuisance.