Links

Tools

Export citation

Search in Google Scholar

Starch-Enhanced Synthesis of Oxygenates from Methane and Carbon Dioxide Using Dielectric-Barrier Discharges

Journal article published in 2003 by Ji-Jun Zou ORCID, Yue-Ping Zhang, Chang-Jun Liu, Yang Li, Baldur Eliasson
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

In this work, starch has been used to enhance the oxygenate formation directly from methane and carbon dioxide using dielectric-barrier discharges (DBDs). The use of starch inhibits the formation of liquid hydrocarbons and significantly increases the selectivity of oxygenates. Oxygenates produced include primarily formaldehyde, methanol, ethanol, formic acid, and acetic acid. The total selectivity is about 10–40% with conversion of methane and carbon dioxide of about 20%. Lower methane feed concentration favors the production of oxygenates, and higher feed flow rate leads to higher selectivity of oxygenates in the presence of starch.