Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Magnetic Resonance, (261), p. 64-72, 2015

DOI: 10.1016/j.jmr.2015.10.004

Links

Tools

Export citation

Search in Google Scholar

Long-lived spin states as a source of contrast in magnetic resonance spectroscopy and imaging

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A method is proposed to create Long-Lived spin States (LLSs) from longitudinal spin magnetization, which is based on adiabatic switching of a Radio-Frequency (RF) field with proper frequency. The technique is simple to implement with standard Nuclear Magnetic Resonance (NMR) equipment, providing an excellent conversion of population from the triplet T+ (or T-) state to the singlet state of a pair of spins and back. The method has been tested for the amino acid tyrosine and its partially deuterated isotopomer; for the deuterated compound, we have achieved a LLS lifetime, which exceeds the longitudinal relaxation time by a factor of 21. Furthermore, by slightly modifying the method, an enhanced contrast with respect to LLSs in NMR spectra is achieved; contrast enhancements of more than 1200 are feasible. This enables efficient suppression of longitudinal spin magnetization in NMR allowing one to look selectively at LLSs. Using this method we have demonstrated that not only spectral but also spatial contrast can be achieved: we have obtained spatial NMR images with strongly improved contrast originating from the difference of LLS lifetimes at different positions in the sample.