Published in

Elsevier, Journal of Biological Chemistry, 44(277), p. 42409-42416, 2002

DOI: 10.1074/jbc.m208442200

Links

Tools

Export citation

Search in Google Scholar

Core Protein Dependence of Epimerization of Glucuronosyl Residues in Galactosaminoglycans

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Chondroitin sulfate and dermatan sulfate proteoglycans are distinguished by differences in their proportion of d-glucuronosyl and l-iduronosyl residues, the latter being formed by chondroitin-glucuronate 5-epimerase during or after glycosaminoglycan chain polymerization. To investigate the influence of the core protein on the extent of epimerization, we expressed chimeric proteins in 293 HEK cells constructed from intact or modified Met(1)-Gln(153) of decorin (DCN), which normally has a single dermatan sulfate chain at Ser(34), in combination with intact or modified Leu(241)-Ser(353) of CSF-1, which has a chondroitin sulfate attachment site at Ser(309). Transfected DCN(M1-Q153), like full-length DCN, contained approximately 20% l-iduronate. Conversely, transfected CSF-1(L241-S353), attached C-terminally on the DCN prepropeptide, contained almost exclusively d-glucuronate. Transfected intact chimeric DCN(M1-Q153)-CSF-1(L241-S353), with two glycosaminoglycan chains, also contained almost exclusively d-glucuronate in chains at both sites, as did chimeras in which alanine was substituted for serine at either of the glycosaminoglycan attachment sites. Nevertheless, undersulfated intact chimeric proteoglycan was an effective substrate for epimerization of glucuronate to iduronate residues when incubated with microsomal proteins and 3'-phosphoadenylylphosphosulfate. C-terminal truncation constructs were prepared from the full-length chimera with an alanine substitution at the CSF-1 glycosaminoglycan attachment site. Transfected truncations retaining the alanine-blocked site contained chains with essentially only glucuronate, whereas those further truncated by 49 or more amino acids and missing the modified attachment site contained chains with approximately 15% iduronate. This 49-amino acid region contains a 7-amino acid motif that appears to be conserved in several chondroitin sulfate proteoglycans. The results are consistent with a model in which the core protein, possibly via this motif, is responsible for routing to subcellular compartments with or without sufficient access to chondroitin-glucuronate 5-epimerase for the addition of chains with or without iduronate residues, respectively.