Published in

American Institute of Physics, Applied Physics Letters, 7(96), p. 071912

DOI: 10.1063/1.3309755

Links

Tools

Export citation

Search in Google Scholar

Stress- and magnetic field-induced entropy changes in Fe-doped Ni–Mn–Ga shape-memory alloys

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Isothermal stress- and magnetic field-induced entropy changes in a Fe-doped Ni–Mn–Ga alloy have been measured in the limits of low applied stress and magnetic field. We have obtained that in this limit while elastocaloric is conventional, giving rise to an increase of entropy when a stress is applied, magnetocaloric effect is inverse, which means that entropy decreases by application of an applied magnetic field. This inverse effect is a consequence of the magnetostructural coupling driven by the martensitic transition.