Published in

IOP Publishing, New Journal of Physics, 2(13), p. 023022, 2011

DOI: 10.1088/1367-2630/13/2/023022

Links

Tools

Export citation

Search in Google Scholar

Random population model to explain the recombination dynamics in single InAs/GaAs quantum dots under selective optical pumping

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We model the time-resolved and time-integrated photoluminescence of a single InAs/GaAs quantum dot (QD) using a random population description. We reproduce the joint power dependence of the single QD exciton complexes (neutral exciton, neutral biexciton and charged trions). We use the model to investigate the selective optical pumping phenomenon, a predominance of the negative trion observed when the optical excitation is resonant to a non-intentional impurity level. Our experiments and simulations determine that the negative charge confined in the QD after exciting resonance to the impurity level escapes in 10 ns.