American Physical Society, Physical Review Letters, 21(98)
DOI: 10.1103/physrevlett.98.216103
Full text: Unavailable
We report the production and characterization of a form of amorphous carbon with s p-s p(2) hybridization (atomic fraction of sp hybridized species > or =20%) where the predominant sp bonding appears to be (=C=C=)(n) cumulene. Vibrational and electronic properties have been studied by in situ Raman spectroscopy and electrical conductivity measurements. Cumulenic chains are substantially stable in high vacuum conditions for temperatures lower than 250 K and they influence the electrical transport properties of the s p-s p(2) carbon through a self-doping mechanism by pinning the Fermi level closer to one of the mobility gap edges. Upon heating above 250 K the cumulenic species decay to form graphitic nanodomains embedded in the s p(2) amorphous matrix thus reducing the activation energy of the material. This is the first example of a pure carbon system where the s p hybridization influences bulk properties.