Published in

IOP Publishing, Superconductor Science and Technology, 8(26), p. 084005

DOI: 10.1088/0953-2048/26/8/084005

Links

Tools

Export citation

Search in Google Scholar

The influence of dissipation in a 1D quantum metamaterial

Journal article published in 2013 by R. D. Wilson, M. J. Everitt, S. Savel’ev ORCID, A. M. Zagoskin
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Quantum metamaterials consist of quantum coherent structures made up of artificial atoms connected by a transmission medium. In this work we investigate the effects of decoherence in both the transmission medium and the artificial atom using a fully quantum mechanical model. We consider a prototypical solid state 1D quantum metamaterial, i.e. a superconducting flux qubit coupled to a transmission line section on resonance. An initially excited qubit is found to effectively pump a propagating coherent pulse and increase the average output power of the transmission line. Evidence of entanglement between the qubit and the transmission line with a propagating coherent pulse is also demonstrated. This signature behaviour is found to still be evident when a level of decoherence in line with that found in typical experiments is introduced into the transmission line section as well as the qubit. Increasing levels of decoherence, particularly in the qubit, are shown to be dangerous as they destroy the quantum correlations between the qubit and the propagating field.