Published in

American Society for Clinical Investigation, Journal of Clinical Investigation, 7(117), p. 1856-1865, 2007

DOI: 10.1172/jci31664

Links

Tools

Export citation

Search in Google Scholar

An erythroid chaperone that facilitates folding of α-globin subunits for hemoglobin synthesis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Erythrocyte precursors produce abundant alpha- and beta-globin proteins, which assemble with each other to form hemoglobin A (HbA), the major blood oxygen carrier. alphaHb-stabilizing protein (AHSP) binds free alpha subunits reversibly to maintain their structure and limit their ability to generate reactive oxygen species. Accordingly, loss of AHSP aggravates the toxicity of excessive free alpha-globin caused by beta-globin gene disruption in mice. Surprisingly, we found that AHSP also has important functions when free alpha-globin is limited. Thus, compound mutants lacking both Ahsp and 1 of 4 alpha-globin genes (genotype Ahsp(-/-)alpha-globin*(alpha/alphaalpha)) exhibited more severe anemia and Hb instability than mice with either mutation alone. In vitro, recombinant AHSP promoted folding of newly translated alpha-globin, enhanced its refolding after denaturation, and facilitated its incorporation into HbA. Moreover, in erythroid precursors, newly formed free alpha-globin was destabilized by loss of AHSP. Therefore, in addition to its previously defined role in detoxification of excess alpha-globin, AHSP also acts as a molecular chaperone to stabilize nascent alpha-globin for HbA assembly. Our findings illustrate what we believe to be a novel adaptive mechanism by which a specialized cell coordinates high-level production of a multisubunit protein and protects against various synthetic imbalances.