Dissemin is shutting down on January 1st, 2025

Published in

Taylor & Francis, International Reviews in Physical Chemistry, 3(31), p. 367-419

DOI: 10.1080/0144235x.2012.716610

Links

Tools

Export citation

Search in Google Scholar

Ultrafast equilibrium and non-equilibrium chemical reaction dynamics probed with multidimensional infrared spectroscopy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Two-dimensional infrared (2D-IR) spectroscopy provides powerful tools to investigate chemical reaction dynamics in the condensed phase. Correlating excitation and detection frequencies grants access to structural and dynamical information that is hidden in a linear absorption spectrum. Low-barrier reactions naturally can occur on the picosecond time scale, and although they are too rapid to study using nuclear magnetic resonance spectroscopy, the intrinsic ultrafast time resolution of coherent 2D-IR spectroscopy enables direct tracking of equilibrium reactive barrier crossings. 2D-IR chemical exchange spectroscopy can monitor the picosecond dynamics of non-triggered chemical reactions by correlating excited reactant frequencies with detected product frequencies. Solvent and temperature-dependent variations enable comparisons with microscopic rate theories at an unprecedented level of detail. 2D-IR spectroscopy is also emerging as a powerful probe of non-equilibrium light-driven chemical transformations. Transient 2D-IR spectroscopy is able to follow nascent photoproducts caused by electronic excitation or by a temperature jump. Soon it will be possible to study transient species with the full range of 2D observables, such as line shapes and waiting-time dynamics that have motivated the wide adoption of equilibrium 2D-IR spectroscopy. This review summarises the general progress in using 2D-IR spectroscopy to study chemical reactions in solution, focusing on our investigations into reactions of isomerisation of CO2(CO)8, photodissociation of Mn2(CO)10, geminate rebinding in [CpMo(CO)3]2 and charge transfer in betaine-30 as viewed from the first solvation shell.