Published in

Elsevier, Chemical Physics Letters, 1-2(367), p. 15-25

DOI: 10.1016/s0009-2614(02)01660-3

Links

Tools

Export citation

Search in Google Scholar

Performance of semiempirical methods in fullerene chemistry: Relative energies and nucleus-independent chemical shifts

Journal article published in 2003 by Zhongfang Chen, Walter Thiel ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Semiempirical MNDO, AM1, and PM3 calculations are reported for 153 fullerene isomers in an attempt to assess the reliability of these methods through comparisons with ab initio and density functional results. B3LYP/6-31G* relative energies are generally reproduced quite well by these calculations. Qualitative trends in ab initio nucleus-independent chemical shifts at the cage centers are captured by the semiempirical GIAO-MNDO approach while underestimating their absolute values. The agreement between the semiempirical results and the ab initio or density functional reference data is generally better for the larger fullerenes (C60–C102) than for the smaller ones (C20–C50). These systematic comparisons clarify the accuracy that may be expected from semiempirical computations in fullerene chemistry.