Elsevier, BBA - Proteins and Proteomics, 9(1784), p. 1226-1233, 2008
DOI: 10.1016/j.bbapap.2008.04.023
Full text: Unavailable
The muscle nicotinic acetylcholine receptor (AChR) is the prototype of the ligand-gated ion channels (or Cys-loop receptors), formed by 5 homologous subunits (alpha2betagammadelta or alpha2betagammaepsilon), and is the major autoantigen in the autoimmune disease, myasthenia gravis. Previously, we expressed the wild-type extracellular domain (ECD) of the gamma-subunit (gammaECD) of the AChR in yeast Pichia pastoris at 0.3-0.8 mg/L, in soluble but microaggregate form, to use as starting material for structural and antigenicity studies. To optimize these characteristics, we constructed and characterized four gammaECD variants: (a) mutants-1 (gammaC61S) and -2 (gammaC106S-C115S), where the non-conserved Cys of gammaECD were replaced by serines, (b) mutant-3 (gammaCysLoop), where the gamma Cys-loop region was substituted by the cognate region of the acetylcholine binding protein (AChBP) and (c) mutant-4 (gammaCysLoop-C106S-C115S), where both the C106S-C115S and Cys-loop mutations were combined. None of mutants-1 and -2 displayed any improvement, while mutant-3 and -4 were mostly in dimeric form and expressed at much higher levels (2.5 mg/L and 3.5 mg/L respectively). All four mutants and wild-type gammaECD were recognized by sera from myasthenic patients, but mutants-3 and -4 exhibited higher efficiency, compared to wild-type or mutants-1 and -2. These results suggest that the substitution of the Cys-loop region of any AChR ECD with the AChBP counterpart leads to AChR ECD of improved conformation, more suitable for structural and therapeutic studies.