Published in

Optica, Optics Express, S5(21), p. A735, 2013

DOI: 10.1364/oe.21.00a735

Links

Tools

Export citation

Search in Google Scholar

Efficiency and loss mechanisms of plasmonic Luminescent Solar Concentrators

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Using a hybrid nanoscale/macroscale model, we simulate the efficiency of a luminescent solar concentrator (LSC) which employs silver nanoparticles to enhance the dye absorption and scatter the incoming light. We show that the normalized optical efficiency can be increased from 10.4% for a single dye LSC to 32.6% for a plasmonic LSC with silver spheres immersed inside a thin dye layer. Most of the efficiency enhancement is due to scattering of the particles and not due to dye absorption/re-emission.