Published in

Elsevier, Optics Communications, (320), p. 38-42, 2014

DOI: 10.1016/j.optcom.2014.01.045

Links

Tools

Export citation

Search in Google Scholar

Intra-cavity frequency-doubled Cr:LiCAF laser with 265mW continuous-wave blue (395–405nm) output

Journal article published in 2014 by Umit Demirbas ORCID, Reinhard Uecker, Detlef Klimm ORCID, Bernd Sumpf, Götz Erbert
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract We describe continuous-wave (cw) intracavity frequency-doubling experiments performed with a Cr:LiCAF laser. The Cr:LiCAF crystal is home-grown and had passive losses below 0.15% per cm. The laser is pumped by two recently-developed high-brightness tapered diodes, providing a total pump power of 2 W at 680 nm. The Cr:LiCAF laser generated up to 585 mW of cw output power around 800 nm with 43% slope efficiency at an absorbed pump power of 1.4 W. The low passive losses of the crystal enabled storage of up to 380 W of intracavity laser power using a 0.07% transmitting output coupler, demonstrating suitability of Cr:LiCAF gain media for intracavity nonlinear conversion experiments. By performing intracavity frequency doubling with a BBO crystal, cw second-harmonic powers as high as 265 mW around 400 nm have been realized with optical-to-optical conversion efficiencies as high as 13.3%. To our knowledge, these are the highest cw frequency-doubled laser powers and conversion efficiencies obtained from Cr:Colquiriites to date. Moreover, obtained efficiencies are superior compared to what have been achieved with similar Ti:Sapphire systems, due to lower passive losses of Cr:LiCAF crystal. These results demonstrate the appropriateness of Cr:LiCAF gain media as a high-power tunable cw radiation generator in 375–435 nm region.