Published in

American Geophysical Union, Geophysical Research Letters, 11(42), p. 4402-4410, 2015

DOI: 10.1002/2015gl064200

Links

Tools

Export citation

Search in Google Scholar

A physical explanation for the development of redox microzones in hyporheic flow

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Recent observations reveal a paradox of anaerobic respiration occurring in seemingly oxic‐saturated sediments. Here we demonstrate a residence time‐based explanation for this paradox. Specifically, we show how microzones favorable to anaerobic respiration processes (e.g., denitrification, metal reduction, and methanogenesis) can develop in the embedded less mobile porosity of bulk‐oxic hyporheic zones. Anoxic microzones develop when transport time from the streambed to the pore center exceeds a characteristic uptake time of oxygen. A two‐dimensional pore‐network model was used to quantify how anoxic microzones develop across a range of hyporheic flow and oxygen uptake conditions. Two types of microzones develop: flow invariant and flow dependent. The former is stable across variable hydrologic conditions, whereas the formation and extent of the latter are sensitive to flow rate and orientation. Therefore, pore‐scale residence time heterogeneity, which can now be evaluated in situ, offers a simple explanation for anaerobic signals occurring in oxic pore waters. Denitrification occurs in anoxic microzones of bulk oxic hyporheic sedimentsMicrozones develop in less mobile porosity due to increased local residence timeGeophysical methods have potential to evaluate hyporheic less mobile porosity