Published in

Cell Press, Neuron, 5(86), p. 1189-1202, 2015

DOI: 10.1016/j.neuron.2015.05.034

Links

Tools

Export citation

Search in Google Scholar

Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

Journal article published in 2015 by Janine Arloth, Ryan Bogdan, Peter Weber, Goar Frishman, Andreas Menke, Klaus V. Wagner, Georgia Balsevich, Mathias V. Schmidt, Nazanin Karbalai, Darina Czamara, Andre Altmann, Dietrich Trümbach, Wolfgang Wurst ORCID, Divya Mehta, Manfred Uhr and other authors.
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain.