Published in

American Chemical Society, Langmuir, 3(27), p. 1241-1244, 2010

DOI: 10.1021/la1038574

Links

Tools

Export citation

Search in Google Scholar

Laser Ablation Direct Writing of Metal Nanoparticles for Hydrogen and Humidity Sensors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A UV pulsed laser writing technique to fabricate metal nanoparticle patterns on low-cost substrates is demonstrated. We use this process to directly write nanoparticle gas sensors, which operate via quantum tunnelling of electrons at room temperature across the device. The advantages of this method are no lithography requirements, high precision nanoparticle placement, and room temperature processing in atmospheric conditions. Palladium-based nanoparticle sensors are tested for the detection of water vapor and hydrogen within controlled environmental chambers. The electrical conduction mechanism responsible for the very high sensitivity of the devices is discussed with regard to the interparticle capacitance and the tunnelling resistance.