Published in

Springer, Gold Bulletin, 3-4(48), p. 111-118, 2015

DOI: 10.1007/s13404-015-0167-z

Links

Tools

Export citation

Search in Google Scholar

Combinatorial exploration of color in gold-based alloys

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Combinatorial approaches comprised of combinatorial magnetron co-sputtering deposition and fast screening methods are introduced to study color as a function of composition in Au-based alloys. The microstructures of the thin films and bulk alloys are identified by X-ray diffraction, and their colors of the alloys are characterized by optical reflectivity. The results reveal that when comparing microstructures and reflectivity, thin films are similar to bulk alloys. In Au-Ag-Cu solid solutions, the color of the ternary alloy follows the rule of mixture. For colors resulting from AuAl2 intermetallic, the color of an alloy scales with the percentage of the intermetallic phase and the deviation from its ideal binary composition. In the Au-Al-Cu library, we found a ∼90 % AuAl2 area fraction compositional window where copper addition can be tuned to improve mechanical properties while keeping purple color, even though Al and CuAl2 phases exist. Moreover, when comparing the color in Au-Cu-Si-Ag amorphous and crystalline state solid solution for the same composition, the colors are essentially identical.