Published in

American Institute of Physics, Applied Physics Letters, 2(99), p. 023305

DOI: 10.1063/1.3610993

Links

Tools

Export citation

Search in Google Scholar

High performance small molecule photodetector with broad spectral response range from 200 to 900 nm

Journal article published in 2011 by Shuang-Hong Wu, Wen-Lian Li, Bei Chu, Zi-Sheng Su, Feng Zhang, C. S. Lee ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We demonstrate a photodetector (PD) with broad spectral response by taking the advantages of more flexible device design in using small molecule materials. The optimized device shows an external quantum efficiency of over 20% from 200 to 900 nm. The high performance is achieved by jointing two donor (D)/acceptor (A) hetero-junctions [m-MTDATA(D)/TiOPc(A) and TiOPc(D)/F16CuPc: PTCDI-C8(A)] such that photoresponses over the deep-ultraviolet (UV) and visible-near infrared regions can be independently optimized. By choosing D- and A-materials with matched energy level alignment, high carrier mobility, and balanced carrier transporting properties, the present PD shows a fast response of 56 ns. The high speed and deep-UV sensitivity might lead to potential military applications such as missile tracking in addition to optical communications, chemical/biological sensing etc.