Published in

16th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics

DOI: 10.1117/12.822400

Links

Tools

Export citation

Search in Google Scholar

Characterization of all-glass photonic band gap fiber

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this paper we report on the fabrication and characterization of a double glass micro-structured fiber with low index core and photonic cladding made of high index micro-rods. Micro rods are made of lead-oxide F2 commercially available glass (SCHOTT Inc.) with a refractive index nD=1.619, while as background we use a borosilicate NC21 glass with a refractive index nD=1.533. The fiber cladding is composed of 8 rings of F2 glass micro rods ordered in hexagonal lattice. A core is created by replacement of seven F2 rods with NC21 rods. A fabricated fiber has a linear filling factor of 0.75 and micro rods diameter of 1.2 mum. A core has a diameter of 3.7 mum while cladding and total fiber diameter are 42,6mum and 120 mum, respectively. Using supercontinuum source we have measured transmission properties of the fabricated fiber. Based on measurements of the fiber samples of 18-80 cm long we have identified two photonic band gaps. Fist band gap is localized in visible range at 610 nm central wavelength. The second broadband photonic band gap is localized in near infrared and it is 80 nm wide at 840 nm central wavelength.