Published in

American Chemical Society, Journal of Medicinal Chemistry, 11(56), p. 4277-4299, 2013

DOI: 10.1021/jm301905a

Links

Tools

Export citation

Search in Google Scholar

Synthesis, Pharmacological Characterization, and Docking Analysis of a Novel Family of Diarylisoxazoles as Highly Selective Cyclooxygenase‑1 (COX-1) Inhibitors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

3-(5-Chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6), a known selective cyclooxygenase-1 (COX-1) inhibitor, was used to design a new series of 3,4-diarylisoxazoles in order to improve its biochemical COX-1 selectivity and antiplatelet efficacy. Structure−activity relationships were studied using human whole blood assays for COX-1 and COX-2 inhibition in vitro, and results showed that the simultaneous presence of 5-methyl (or -CF3), 4-phenyl, and 5-chloro(-bromo or -methyl)furan-2-yl groups on the isoxazole core was essential for their selectivity toward COX-1. 3g, 3s, 3d were potent and selective COX-1 inhibitors that affected platelet aggregation in vitro through the inhibition of COX-1-dependent thromboxane (TX) A2. Moreover, we characterized their kinetics of COX-1 inhibition. 3g, 3s, and 3d were more potent inhibitors of platelet COX-1 and aggregation than P6 (named 6) for their tighter binding to the enzyme. The pharmacological results were supported by docking simulations. The oral administration of 3d to mice translated into preferential inhibition of platelet-derived TXA2 over protective vascular-derived prostacyclin (PGI2).