Dissemin is shutting down on January 1st, 2025

Published in

The Geochemical Society of Japan, Geochemical Journal -Japan-, 1(48), p. 51-62, 2014

DOI: 10.2343/geochemj.2.0285

Links

Tools

Export citation

Search in Google Scholar

Glycine oligomerization up to triglycine by shock experiments simulating comet impacts

Journal article published in 2014 by Haruna Sugahara ORCID, Koichi Mimura
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

We conducted shock experiments simulating comet impacts to assess the feasibility of peptide synthesis by such a process. We used frozen mixture of the amino acid glycine, water ice, and silicate (forsterite) as the starting material and applied impact shocks ranging from 4.8 to 26.3 GPa using a vertical propellant gun under cryogenic conditions (77 K). The results show that amino acid oligomerization up to trimers can be achieved. Further, linear peptides (dipeptide and tripeptide forms), which are important materials for the further elongation of peptide chains, were obtained in yields of one or two magnitudes greater than that of cyclic peptide form (diketopiperazine). These results contrast with those by Blank et al. (2001) for shock experiments of amino acid solutions at room temperature, which showed the synthesis of a comparable amount of diketopiperazines to that of the linear peptides. Thus, the existence of cryogenic conditions at the point of impact shock may be critical for the formation of linear peptides. Our results demonstrate that comet impacts could have supplied a significant amount of linear peptides on the early Earth and other extraterrestrial bodies.