Published in

Wiley, European Journal of Oral Sciences, 5(118), p. 494-501, 2010

DOI: 10.1111/j.1600-0722.2010.00758.x

Links

Tools

Export citation

Search in Google Scholar

Enzymatic degradation of adhesive–dentin interfaces produced by mild self‐etch adhesives

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Endogenous matrix metalloproteinases (MMPs) released by adhesive procedures may degrade collagen in the hybrid layer and so compromise the bonding effectiveness of etch-and-rinse adhesives. In this study, endogenous enzymatic degradation was evaluated for several simplified self-etch adhesives. In addition, primers were modified by adding two MMP inhibitors: chlorhexidine, a commonly used disinfectant, but also a non-specific MMP inhibitor; and SB-3CT, a specific inhibitor of MMP-2 and MMP-9. Gelatin zymography of fresh human dentin powder was used to identify the enzymes released by the adhesives. Micro-tensile bond strength (μTBS) testing was used to assess the mechanical properties of resin-dentin interfaces over time. In none of the experimental groups treated with the mild self-etch adhesives was MMP-2 and/or MMP-9 identified. Also, no difference in the μTBS was measured for the inhibitor-modified and the control inhibitor-free adhesives after 6 months of water storage. It is concluded that in contrast to etch-and-rinse adhesives, the involvement of endogenous MMP-2 and MMP-9 in the bond-degradation process is minimal for mild self-etch adhesives.