Published in

Wiley, Developmental Medicine & Child Neurology, 8(54), p. 765-769, 2012

DOI: 10.1111/j.1469-8749.2012.04316.x

Links

Tools

Export citation

Search in Google Scholar

A novel mutation in the β‐tubulin gene TUBB2B associated with complex malformation of cortical development and deficits in axonal guidance

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Neurological disorders characterized by abnormal neuronal migration, organization, axon guidance, and maintenance have recently been associated with missense and splice-site mutations in the genes encoding α- and β-tubulin isotypes TUBA1A, TUBB2B, TUBB3, and TUBA8. We found a novel heterozygous mutation c.419G > C in exon 4 of the gene encoding TUBB2B in a female with microcephaly, agenesis of the corpus callosum, open-lip schizencephaly of the left parietal lobe, extensive polymicrogyria, basal ganglia and thalami dysmorphisms, and vermis and right third nerve hypoplasia. The missense change results in a glycine to alanine substitution; the mutated residue falls within an invariant glycine-rich region and therefore is likely to result in impaired protein function and possibly microtubule formation. This study expands the spectrum of brain malformations associated with mutations in the β-tubulin gene TUBB2B, supporting its critical role in migration/organization and axon guidance processes. In addition, it suggests a possible genetic aetiology of schizencephaly, thus strengthening the hypothesis that there is a common pathophysiological base in polymicrogyria and schizencephaly.