Published in

Elsevier, The American Journal of Pathology, 5(181), p. 1782-1795, 2012

DOI: 10.1016/j.ajpath.2012.07.023

Links

Tools

Export citation

Search in Google Scholar

Oncostatin M Is a Growth Factor for Ewing Sarcoma

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Primary bone tumors, osteosarcomas and chondrosarcomas, derive from mesenchymal stem cells committed into osteoblasts and chondrocytes; in Ewing sarcomas (ESs), the oncogenic fusion protein EWS-FLI1 prevents mesenchymal differentiation and induces neuroectodermic features. Oncostatin M (OSM) is a cytokine from the IL-6 family that modulates proliferation and differentiation in numerous cells. The basis for inhibition versus induction of proliferation by this cytokine is obscure, although MYC was described as a potent molecular switch in OSM signaling. We show herein that, in contrast to osteosarcomas and chondrosarcomas, for which OSM was cytostatic, OSM induced proliferation of ES cell lines. Knockdown experiments demonstrated that growth induction by OSM depends on both types I [leukemia inhibitory factor receptor (LIFR)] and II [OSM receptor (OSMR)] receptors, high STAT3 activation, and induction of MYC to a high expression level. Indeed, ES cell lines, mice xenografts, and patient biopsy specimens poorly expressed LIF, precluding LIFR lysosomal degradation and OSMR transcriptional induction, thus leading to a high LIFR/OSMR ratio. Because other neuroectodermic tumors (ie, glioma, medulloblastoma, and neuroblastoma) had a similar expression profile, the main role of EWS-FLI1 could be through maintenance of stemness and neuroectodermic features, characterized by a low LIF, a high LIFR/OSMR ratio, and high MYC expression. Thus, this study on rare bone malignancies gives valuable insights on more common cancer regulatory mechanisms and could provide new therapeutic opportunities.