Published in

American Physical Society, Physical review B, 8(73)

DOI: 10.1103/physrevb.73.085101

Links

Tools

Export citation

Search in Google Scholar

Nonperturbative behavior of the quantum phase transition to a nematic Fermi fluid

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We discuss shape (Pomeranchuk) instabilities of the Fermi surface of a two-dimensional Fermi system using bosonization. We consider in detail the quantum critical behavior of the transition of a two-dimensional Fermi fluid to a nematic state which breaks spontaneously the rotational invariance of the Fermi liquid. We show that higher dimensional bosonization reproduces the quantum critical behavior expected from the Hertz-Millis analysis, and verify that this theory has dynamic critical exponent z=3. Going beyond this framework, we study the behavior of the fermion degrees of freedom directly, and show that at quantum criticality as well as in the quantum nematic phase (except along a set of measure zero of symmetry-dictated directions) the quasiparticles of the normal Fermi liquid are generally wiped out. Instead, they exhibit short-ranged spatial correlations that decay faster than any power law, with the law ∣x∣−1exp(−const ∣x∣1∕3) and we verify explicitly the vanishing of the fermion residue utilizing this expression. In contrast, the fermion autocorrelation function has the behavior ∣t∣−1exp(−const ∣t∣−2∕3). In this regime we also find that, at low frequency, the single-particle fermion density of states behaves as N*(ω)=N*(0)+Bω2∕3lnω+⋯, where N*(0) is larger than the free Fermi value, N(0), and B is a constant. These results confirm the non-Fermi liquid nature of both the quantum critical theory and of the nematic phase.