Dissemin is shutting down on January 1st, 2025

Links

Tools

Export citation

Search in Google Scholar

Case-Based Multiagent Reinforcement Learning: Cases as Heuristics for Selection of Actions

Proceedings article published in 2010 by Reinaldo A. C. Bianchi ORCID, Ramon López de Mántaras
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

This work presents a new approach that allows the use of cases in a case base as heuristics to speed up Multiagent Reinforcement Learning algorithms, combining Case-Based Reasoning (CBR) and Multiagent Reinforcement Learning (MRL) techniques. This approach, called Case-Based Heuristically Accelerated Multiagent Reinforcement Learning (CB-HAMRL), builds upon an emerging technique, Heuristic Accelerated Reinforcement Learning (HARL), in which RL methods are accelerated by making use of heuristic information. CB-HAMRL is a subset of MRL that makes use of a heuristic function H derived from a case base, in a Case-Based Reasoning manner. An algorithm that incorporates CBR techniques into the Heuristically Accelerated Minimax--Q is also proposed and a set of empirical evaluations were conducted in a simulator for the Littman's robot soccer domain, comparing the three solutions for this problem: MRL, HAMRL and CB-HAMRL. Experimental results show that using CB-HAMRL, the agents learn faster than using RL or HAMRL methods.